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Abstract
We propose an instance-based learning algorithm named
IBRL3 which acquires some kind of control rules not to
fail in a dynamic environment, and we examine its perfor-
mance via application to the cart-pole balancing problem.
In this algorithm, a tuple of input, output and preference
value of each execution cycle are stored in memory verba-
tim, and the action of each cycle is decided by retrieving
the nearest neighbor of the current input data. The number
of stored instances is reduced by replacing the nearest but
less reliable instance by new one. Experimental results of
computer simulation show that IBRL3 is robust for dis-
tinct settings of parameters and for noisy environments,
and is efficient enough to apply to some kinds of real-time
control problems.
Keywords: Applied adaptive behavior, Learning con-

trol, Cart-pole balancing problem, Instance-based learn-
ing, Reinforcement learning method.

1 Introduction
We propose an instance-based learning algorithm named
IBRL3 which can be applied to control some kinds of un-
stable systems, and evaluate its performance by applying
it to the cart-pole balancing problem.
On the contrast of inductive learning, in an instance-

based learning, the learner makes no modification for its
inputs and outputs to store them into the memory. It has
neither rule nor equation to model its environment, and
do no generalization. Instead, it retrieves the instances
of high similarity with current input to decide the out-
put. This sort of approach have been examined since
the dawn of AI research[1], and many fields of applica-
tion have been challenged, such as transforming English
words to phonetic signs[2], machine translation[3], diag-

nostic system[4], simple robot control[5, 6], supervised
classification problems[7] and so on, though they were
under many kinds of different terms, such as rote learn-
ing, memory-based reasoning, instance-based learning,
and so on. A recent literature by Salzberg[8] positioned
instance-based learning as one kind of exemplar-based
learning.
We have studied learning mechanisms from a stand-

ing point of simulating adaptive behavior of organisms,
and have proposed instance-based learning mechanisms
named IBRL1 and IBRL2[9] which can be applied to con-
trol problems that is the domain for reinforcement learn-
ing. It was evaluateded by applying an artificial insect
surviving in a two dimensional Euclideanworld simulated
on the computer. In this paper, we propose an extended
version of the algorithm which can learn to control the
unstable inverted pendulum.
The cart-pole balancing problem is one of the popu-

lar testbeds for reinforcement learning methods, as it has
been mentioned by many researchers, such as Michie and
Chambers[10], Barto, Sutton, and Anderson[11], Self-
ridge, Sutton and Barto[12], Anderson[13], and so on.
Recently, from the side of genetic algorithms, some re-
searchers are challenging this problem, such as Odetayo
and McGregor[14], Whitley, Dominic and Rajarshi[15]
and Koike et al[16]. An instance-based approach was
tried by Connel and Utgoff in their learning system named
CART[17]. Sammut stated in his paper with experimen-
tal comparison of some of these approaches that CART
provides the best learning performance on this problem
domain, though it includes a number of domain spe-
cific heuristic strategies and parameters, and needs much
amount of CPU time[18]. IBRL3 includes less domain
specific heuristics and parameters and needs less CPU
time than CART, spending a little victim of the learning
performance; by employing a different strategy but a little
similar to that of BOXES by Michie[10].
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Figure 1: The cart-pole system.

Wewill describe the specification of the learning task, a
detail of the learning algorithm, experimental results, and
then comparison with other algorithms in the following
sections.

2 The Cart-Pole Balancing Problem
The cart-pole balancing problem, namely the inverted
pendulum problem, have often been mentioned as a typi-
cal control problem. Here we employ the problem specifi-
cation used by Anderson[13] as the learning task. Figure
1 shows a schematic illustration of the cart-pole system.
State of the cart-pole system at time is represented by

the following four numerical parameters:
the position of the cart on the track,

˙ the velocity of the cart,
the angular position of the pole, and

˙ the angular velocity of the pole.
The learner receives the vector of these four values as
the input from the environments at each time step. The
output from the learner, that is the control variable, is
the force which will be applied to the cart, of which
value is either LEFT or RIGHT of fixed forces. It has no
continuous numerical value. (See appendix for detail
about the computer simulation.) In addition to the above
four values, the reinforcement is given to the learner,
of which value becomes 1 when the cart reaches the end
of track or the pole has fallen down, otherwise 0. The
objective of learning is to get less frequently to suffer

1.
The learning is done through repeated trials for con-

trolling the cart-pole system. The procedure of one trial
is as follows.
1. Start with the cart at the center of track and with the
pole standing vertically.

2. Control the cart-pole system.

3. Stop when the cart reaches the end of track or when
the pole has fallen down.

If the learning is effective, the number of steps in one trial
increases while iterating trials.

3 Learning Algorithm
The basic idea of instance-based learning can be said as
follows.

Store the tuples of input and output data in memory
verbatim over the experiences.

Select the best output by retrieving the instances from
memory which is similar to the current situation.

In supervised classification problems, the output can be
the category name of the most similar instance retrieved,
the nearest neighbor. However, in control problems with
delayed reinforcement, it becomes somewhat difficult to
select the best action because the utility of the decision at
each step is given later and is not always reliable.
We call the learning algorithm proposed here IBRL3

as the successor of IBRL1 and IBRL2 previously devel-
oped. In IBRL3, likeBOXES, it makes no modification in
memory until the trial finishes, and after that the instances
given during the trial are stored in memory, because the
instances on the current trial are given no evaluation and
they are useless for the decision procedure.
The main program of IBRL3 can be drawn as follows.

Algorithm 1

program IBRL3;
repeat begin

: 0;
repeat begin

:= 1;
:= GetSenseData;
:= Policy ;

TakeAction( );
end until GetReinforcement 1
ModifyMem

end forever.

The input and output data at each step is recorded in
queue, , in function Policy, and they are moved into the
memory in procedure ModifyMem after the reinforce-
ment becomes 1.
IBRL3 uses a number of sets as memory each of which

is corresponding to a distinct alternative for output, LEFT
and RIGHT on the cart-pole balancing problem. We denote
the set corresponding to the output data by . An
element in this set is a tuple of input data and its preference
value , ˙ ˙ . Here we call this element
instance. In the cart-pole balancing problem, can be the
expected number of steps till falling down. Considering
general cases for dimensional input data, we denote an
instance by

1 2

On output data, we denote the set of alternatives by
so as to make it possible to mention more than two can-
didates. In the case of the cart-pole balancing problem,

LEFT RIGHT .
We describe a detail of the decision procedure Policy

and the memorizing procedureModifyMem in the rest of
this section.
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3.1 Decision making
The decision procedure named Policy is the central mech-
anism in the performance module. In each step, this pro-
cedure retrieves the instances involving the nearest input
data of the current input from each of memory , and
selects the best one in terms of the preference value as
the output of next step. When is empty or the distance
to the nearest instance is over the threshold, it assumes the
preference value to be an estimated average of previous
experiences. The final phase of the procedure is to record
the current input, the selected output, the nearest instance
with the highest value and that distance into a queue as its
th element . The detail is as follows.

Algorithm 2

function Policy
for all in do begin
find in which minimize ;
if or 1
then begin : ; : ; : end
else begin : ; : ; : end

end
find in which maximize ,
where if more than one candidates for exist
then randomly select one among them;
: ;

return .

is a normalized distance between an instance
and an input data which defined by the equation:

1
2

1

2

2

where 2 is the sample variance over the values of all
instances in current memory. Sample variance is defined
as

2 1
1

¯ 2

where is the number of samples. As the following equa-
tions indicate, the average value of becomes 1
in any type of distribution.
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The threshold value 1 for the distance have come from
this fact. It is of course possible to employ another sort of
measure for distance, but the square of Euclidean distance
takes relatively less computational time and normalizing
by sample variance has an advantage described above.

is a global variable of which value is the estimated
average of preference. In each end of trials, it is renewed
by

: 1

where is the number of steps of the trial, and and
are constants of 0 1 . We use 0 8 and 0 5 in
our experiments described later.

3.2 Memorizing
After one trial stopped, the learner modifies its memory
referring to the history of the trial recorded in the queue.
The basic strategies of this operation are:

to memorize the instances so as to cover the state
space with an appropriate density, and

to manage the preference value of each instance so
as to estimate the number steps till a negative rein-
forcement would be given if it selected the output
value associated with the instance.

These strategies can be implemented in the following pro-
cedure.

If the distance is short and the new data is better than
the known instance, replace the known instance by
new data.

If the distance is short but the new data is worse than
the known instance, reduce the preference value of
the known instance.

If there is no instance near enough, add the new data
into memory.

The detail algorithm is as follows.

Algorithm 3

procedureModifyMem;
for in 1 do begin

: ;
if then
if
then replace in by
else reduce

else add into
end.

For all elements in the queue 1 2 , if the
distance , the fourth element of , is shorter than the
threshold , and the preference value of the instance
, the third element of , is less than , then replace
in the set by a new instance including the input data
, the first element of , and as its preference value,
where the output datum is the second element of . If
is greater than then reduce . If the distance is

longer than , add the new instance into .
Reduction of the preference value is done by computing

the weighted average among the current value and
for all of where involves , where the weight of
the current value is 1 and the weight of is 1 .
The more similar, the greater weighted. If this type of
reduction were omitted, the performance module could
not avoid falling down from a cliff whilewalking along the
course slitely different from the good route experienced
before.
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4 Experimental Results
Our experiments are under quite same settings as that
done by Sammut[18], that is, the initial state of each
trial is given as 0 0 1 , 0 6 of uniformly
distributed random numbers and both ˙ 0 and ˙0 are 0.
And the negative reinforcement 1 is given when

2 4 or 12 . We tried the following three
cases of distinct values of the force applied to the cart.

Case1: 10 when the output datum RIGHT,
10 when LEFT.

Case2: 5 when RIGHT, 10 when
LEFT.

Case3: Same settings as Case1 except noise given by
uniformly distributed random numbers of 2 is
added, that is, 10 .

Case3, not mentioned by Sammut, is useful to expect the
performance on real machines because there are always
many factors not considered in the ideal simulation.
One run stopswhen the pole does not fall downformore

than 10,000 steps while iterating trials. The result of run is
the number of trials it includes. We evaluated the learning
performance by the averaged number of trials over 100
runs on distinct random number sequences. For each of
Case1, Case2 and Case3, the evaluation was done for
distinct values of , the threshold used in ModifyMem,
from 0.2 to 1.0 increasing by 0.1. Table 1 shows the
results which consists of averages, standard deviations,
minimum values and maximum values of the number of
trials and instances in memory. Figure 2 summarizes the
averaged performances and the memory costs of IBRL3
on a variety of s.
The number of trials increases in the order of Case1,

Case2 and Case3. In those cases, the number becomes
minimum at around 0 3 or 0 4. This indicates that
the performance gets worse in both cases of too small and
too large values of . The number of instances in memory
which indicates the computational cost of time and space
varies inversely as . This result is natural because the
chance of adding new data into memory must increase for
less value of . It is important that the results of Case2
andCase3 suggests robustness of IBRL3 for other settings
and for noisy environments, which implies usefulness for
real world applications.

5 Comparison with Other Methods
Sammut compared BOXES by Michie[10], AHC[11, 12]
by Barto and Sutton, and CART by Connel[17], in his
experiments[18]. Table 2 shows comparison with that re-
sults on learning rate. As this table indicates, in Case1
CART shows the best performance and IBRL3 is the sec-
ond, but in Case2 IBRL3 is the best. Sammut did not
show the exact value for CART in Case2, but he pointed
out that its took 58 steps in less severe condition. In
BOXES, AHC and CART, the trials in Case2 are 3.7, 28
and 4.5 times of in Case1 respectively, but less than 1.2
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Figure 2: Average number of trials and instances in mem-
ory over 100 runs varying the threshold value .
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times in IBRL3. This indicates that IBRL3 is more robust
than the others against somewhat complex state space.
On the point of computational cost, IBRL3 takes pro-

portional CPU time to the number of instances in memory
in each step. But it can be reduced by increasing the value
of spending a little victim of the learning performance.
In the experimental results, the number of instances is
87.22 in average and 624 in max for Case1 of 0 3
in which it shows the best performance. In the case of
376 instances, it took 3.03 milliseconds of CPU time par
one step on SPARC Station IPC with 25MHz SPARC IU
and FPU, which is short enough to control the real sys-
tem. Note that the time step for computer simulation is 20
milliseconds. According to the paper by Sammut, CART
takes too long CPU time to control for the real system.

6 Conclusion

Weproposed an instance-based learning algorithm named
IBRL3 which can be applied to learning control for the
cart-pole system, and confirmed its performance through
the experiments on computer simulation. Experimental
results shows that IBRL3 is robust for distinct settings of
parameters and for noisy environments, and is efficient
enough for real machine applications.
This approach is generally applicable to the learning

task with delayed negative reinforcement, where the in-
put is represented in a vector of numerical values and
the output is a symbol selected from a priori known set.
When we consider to apply this algorithm to more com-
plex areas, such as a large number of factors in the input
or a large number of alternatives for output, both learn-
ing rate and computational cost would get worse. But
fortunately, more efficient algorithms have been proposed
to find the nearest neighbor in n-dimensional Euclidean
space as used in Moore’s system[6]; though there may be
no settlement for learning rate.
One additional condition for the applicable task is that

the optimal or pseudo-optimal action must be determined
from the current input at each step independently from
the context. If the learning task requires context sensitive
decision making, the retrieval of known instances must
mention the context. This problem will be tackled in our
next work.
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Appendix: Simulation of theCart-Pole
System
The cart-pole system is simulated according to the fol-
lowing equations of motion[13]:

¨
sin cos

˙2 sin

4
3

cos2

¨
˙ 2 sin ¨ cos

where

9 8 2 acceleration due to gravity,
1 0 mass of the cart,
0 1 mass of the pole,
0 5 distance from center of mass of pole to the pivot.

The simulater computes numerically approximated val-
ues of state variables at each time step sliced by 0 02
seconds using Euler’s method with the following state
equations:

1 ˙ ˙ 1 ˙ ¨
1 ˙ ˙ 1 ˙ ¨

The time length to apply force applied to the cart is
0 02 seconds the same value of .
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Table 1: Experimental results. Averages, standard deviations, minimum values and maximum values of the number of
trials and instances in memory over 100 runs.

Case1: RIGHT 10 , LEFT 10
Trials Instances

Average S.D. Min Max Average S.D. Min Max
0.2 53.88 52.42 7 390 414.56 146.85 81 788
0.3 42.43 26.54 6 211 311.17 87.22 79 624
0.4 46.54 33.67 10 198 253.22 124.13 124 1017
0.5 48.00 40.63 6 237 198.40 42.35 95 305
0.6 49.20 37.06 4 213 176.53 46.08 66 343
0.7 44.88 32.30 4 173 155.65 36.73 62 248
0.8 49.93 34.54 7 168 143.29 27.16 95 260
0.9 51.89 37.89 7 208 127.86 26.66 55 203
1.0 51.01 35.29 6 186 118.09 22.85 54 208

Case2: RIGHT 5 , LEFT 10
Trials Instances

Average S.D. Min Max Average S.D. Min Max
0.2 68.97 53.94 13 288 458.58 177.24 162 1437
0.3 47.73 31.07 8 169 277.58 72.32 119 501
0.4 50.16 38.00 7 191 225.84 83.66 71 770
0.5 55.75 44.82 7 213 183.88 60.52 99 582
0.6 57.39 49.77 8 295 155.91 41.09 49 345
0.7 61.58 49.25 9 289 133.28 30.98 60 223
0.8 57.53 41.42 8 323 121.05 28.10 72 201
0.9 59.35 45.44 10 296 110.29 26.85 49 240
1.0 54.73 42.92 12 285 95.23 20.03 51 164

Case3: RIGHT 10 , LEFT 10 , ( 2)
Trials Instances

Average S.D. Min Max Average S.D. Min Max
0.2 83.38 69.32 6 431 418.12 109.75 84 710
0.3 63.17 56.83 10 266 274.68 82.67 105 560
0.4 58.03 53.72 13 326 221.84 100.52 114 1076
0.5 64.19 52.94 14 365 180.97 47.57 90 427
0.6 61.83 42.80 12 234 148.69 30.61 81 253
0.7 57.43 34.95 6 204 133.61 29.36 61 213
0.8 66.17 47.40 6 262 122.68 30.33 63 257
0.9 65.40 53.89 12 290 109.23 21.93 68 185
1.0 70.14 46.94 11 240 98.96 20.69 62 172

Table 2: Comparison with the experimental results by Sammut. Each value except IBRL3 is the averaged number of
trials of five runs. The value of IBRL3 is of 100 runs where 0 3.

BOXES AHC CART IBRL3
Case1 225 90 13 42.43
Case2 837 2562 58 47.73
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